DEPARTMENT OF CHEMICAL AND BIOCHEMICAL ENGINEERING

Materials for Sustainable Infrastructure, Energy, & Environment

Materials for Sustainable Infrastructure

- Advanced chemical admixtures for cement & concrete
- Hydration, microstructure, and durability of cement-based materials
- Alternative, eco-efficient and resilient concrete binders
- Nanotechnology and application to cement-based systems
- Thermodynamics-based design of materials for sustainable infrastructure
- Mitigation and control of deteriorative reactions in cementbased materials

Materials for Sustainable Energy and Environment

- Nanocomposites and functional materials for water treatment
- Waste immobilization and conversion
- CO₂ conversion and utilization in construction materials
- · Microporous, inorganic electrides, and energy materials

Nano-engineered, Bio-inspired & Roman concrete-inspired cements:

- Energy and eco-efficient
- Marine-durable & sustainable
- Resilient and lightweight
- Corrosion resistant

Design of nanocomposites that are capable of:

- Sequestering heavy metal contaminants
- Immobilizing radionuclides

Inorganic electrides for waste energy harvesting and catalysis:

- · Room-temperature stable
- Low-cost
- Optically transparent

Monday U. Okoronkwo, PhD

Assistant Professor

Chemical & Biochemical Engineering

Email: okoronkwom@mst.edu Website: www.susmatlab.com

Funding

- NSF
- Missouri S&T; MRC

Keywords

#Cement and Concrete, #Materials, #Nanocomposites, #Sustainability, #Thermodynamics, #Admixtures, #Rheology #Energy and Environment, #Wastewater/Water Treatment, #Waste immobilization

Recognitions

- Materials and Structures Outstanding Paper 2016
- Principals Research Excellence Award, Aberdeen 2013
- Best Graduating Student and University Valedictorian 2007

CEC Research